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Abstract

We consider the discrete Schrödinger operator −�d + U in Z
N,N � 1 in the

case of a potential with negative part in an appropriate �σ -space (decays with
an appropriate rate). We present a discrete analog of the method of Li and Yau
(1983 Commun. Math. Phys. 88 309–18), proving an explicit upper estimate
on the number of bound states Nd(0) = #{j : μj � 0}, which is independent
of the dimension of the lattice. This is a major difference with the continuous
counterpart estimate, which is not valid when N = 1, 2. As a consequence,
a dimension-independent smallness criterion for the existence of bound states
is derived in contrast to the continuous case as well as to the discrete case
of vanishing potential. A short comment is made on possible applications of
the results to the study of the dynamics of some particular spatially discrete
nonlinear systems.

PACS numbers: 02.30.Tb, 02.30.Jr, 05.45.−a
Mathematics Subject Classification: 47B39, 34L15, 35Q55, 37K60

1. Introduction

Consider the Schrödinger operator −� + U(x), x ∈ R
N , where U(x) is a rapidly decaying

potential. A standing wave �(x, t) = e−iλt�(x), λ ∈ R, is a solution of the time-dependent
Schrödinger equation

i∂t� = −�� + U(x)�, x ∈ R
N.

Clearly � and λ satisfy

−�� + U(x)� = λ�, x ∈ R
N, (1.1)

i.e. �(x) and λ are an eigenfunction (eigenstate) and an eigenvalue of the operator −�+U(x),
respectively. Let the potential U : R

N → R, N � 3, and denote by U−(x) its negative part.
If

∫
R

N |U−(x)| dx < ∞ then the number of non-positive eigenvalues N (0) of the problem
(1.1) is finite (the operator −� + U(x) has a discrete spectrum on the negative real line).
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For potentials whose negative part is in LN/2(RN), Li and Yau [26] proved that the number
N (0) = #{j : λj � 0}, (known as the number of bound states), can be estimated as

N (0)

(
N(N − 2)

4e

) N
2

ωN−1 �
∫

R
N

|U−| N
2 dx, N � 3, (1.2)

where ωN−1 is the volume of the unit (N − 1)-sphere. The estimate (1.2) is also known
as the Cwiekel–Lieb–Rosenbljum (CLR) inequality [11, 27, 28, 32] and was conjectured by
Simon [33]. Inequality (1.2) has an important consequence: if ‖U−‖

L
N
2 (RN )

� 1, there are no

negative eigenvalues for (1.1).
The method of [26] (which contains brief historical notes on the problem) has been

remarked for its simplicity. The main argument is based on the consideration of the auxiliary
operator −�

q(x)
, with q(x) > 0 be in L

N
2 (RN). The auxiliary operator has a discrete spectrum

in the positive real line. If μn denotes its nth eigenvalue, the function
∑∞

n=1 exp(−2μnt) is
estimated with the help of the Sobolev inequality and its optimal constant,∫

R
N

|∇u|2 dx � N(N − 2)

4
ω

2
N

N−1

(∫
R

N

|u| 2N
N−2 dx

) N−2
N

, N � 3. (1.3)

A series of reduction arguments combined with the fact that N (0) actually equals the number
of eigenvalues less than 1 of −�

q(x)
, yields (1.2).

Now let N be a positive integer and n := (n1, n2, . . . , nN) ∈ Z
N . In this paper, we

consider the discrete eigenvalue problem

−(�dψ)n + Unψn = μψn, n ∈ Z
N . (1.4)

Here ψ = {ψn}n∈Z
N , and �d stands for the N-dimensional discrete Laplacian

(�dψ)n =
∑
m∈Nn

ψm − 2Nψn, (1.5)

where Nn denotes the set of 2N nearest neighbors of the point in Z
N with label n. This time,

and in similarity with the continuous counterpart (1.1),

φn(t) = e−iμtψn, (1.6)

is a discrete standing wave of the time-dependent discrete Schrödinger equation

i∂tφn = −(�dφ)n + Unφn, n ∈ Z
N . (1.7)

Note that solutions (1.6) fulfilling |ψn| → 0 as |n| → ∞ (here |n| = max1�i�N |ni |
for n = (n1, n2, . . . , nN) ∈ Z

N ), are also known as discrete breathers. The eigenvalue
problem (1.4) will be supplemented with this boundary condition at infinity, which can be
formulated by considering (1.4) in appropriate sequence spaces.

In this work, we present a discrete analog of the proof of [26], estimating the number of
discrete bound states

Nd(0) = #{j : μj � 0},
assuming that the potential U(n) = {Un}n∈Z

N satisfies the condition (P )U = V + U , where

V = {Vn}n∈Z
N ∈ �∞ satisfies Vn � ν0 > 0 for all n ∈ Z

N and U = {Un}n∈Z
N ∈ �

q−1
q−2 for some

fixed q > 2 with Un < 0 for all n ∈ Z
N .

Condition (P) implies that the negative part of the sign-changing potential U decays at an
appropriate rate. The positive part is not decaying. It is only assumed to be bounded but not
necessarily convergent as |n| → ∞.

For a deep analysis on the role of the rate of decay of decaying potentials in discrete
Schrödinger operators in the case N = 1, we refer to the works of Damanik and Teschl
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[12] and Damanik, Hundertmark, Killip and Simon [14]. Let us note first that for decaying
potentials Un, it is known that when lim inf|n|→∞ |nUn| > 1, there are infinitely many bound
states (cf [14]), independently of the sign of the decaying potential Un. Thus inverse square
decay is critical for the existence of infinitely many bound states. Furthermore, in the case
where Un = −cn−2, it is known that the discrete spectrum below zero is finite when c � 1/4
and infinite when c > 1/4. In [12], the borderline behavior between the subcritical and
supercritical cases was thoroughly studied.

The results of this paper do not only demonstrate the power and generality of the method
of [26], but also some important differences with the continuous counterpart as well as with
the discrete case but of decaying potentials. Let us first remark that here there is an analogy
with [26], since under the sign-changing condition (P ), we are always in the case of a finite
number of non-positive eigenvalues. On the other hand, a first interesting observation is that
in comparison with the continuous counterpart (1.2), the estimate on Nd(0) is independent of
the dimension of the Z

N -lattice. In theorem 2.5 it is verified that

Nd(0) �
(

e

ν0

) q−1
q−2 ∑

n∈Z
N

|Un|
q−1
q−2 . (1.8)

As in the continuous CLR inequality (1.2), it follows from (1.8) that if ‖Un‖ q−1
q−2

� 1, there

are no negative eigenvalues for (1.4), and this happens independently of the dimension of
the lattice. To emphasize this major difference with the continuous case, we note that the
continuous CLR inequality is not valid for N = 1, 2. A dimension-dependent consequence
similar to that of the continuous CLR inequality holds for discrete operators only in the case
of vanishing potentials. As has been reported in [35], there exists ε > 0 such that if Un is a
decaying potential, N � 4 and ‖Un‖ N

3
� ε the eigenvalue problem (1.4) has no solution.

The above corollary is another manifestation of the role of discreteness appearing this
time from the study of the linear eigenvalue problem (1.4). It comes out through a simple
dimension-independent ‘discrete Sobolev inequality’. The role of discreteness and the main
differences with the continuous case in the study of nonlinear localized modes for the discrete
nonlinear Schrödinger equations (DNLS), were first emphasized and proved by Weinstein in
[37], through the study of a discrete analog of the Gagliardo–Nirenberg interpolation inequality
(remark 2.8). See also [38] for a comparison with the continuous case.

The simple example we consider for the case N = 1 and of a negative part Un = −cn−1

(remark 2.7), which still generates finitely many eigenvalues below zero, demonstrates another
main difference with the case of (strictly negative) decaying potentials. In the latter, it is
known that when the whole potential is Un = −cn−2+εε > 0, the eigenvalue problem (1.4) has
infinitely many eigenvalues [12]. It is also important to note that under condition (P ) and for a
negative part Un = −cn−2, the notion of criticality with respect to the constant c is irrelevant.
This seems to be also in contrast with the continuous Schrödinger operator −� + U(x) in the
case where the potential (or its negative part) is the singular inverse square potential −c|x|−2.
The known results are limited in the case of bounded domains � ⊂ R

N,N � 3, where the
situation may drastically differ, depending on the critical value c∗ = (N −2)2/4—the optimal
constant of the Hardy inequality. We refer to [6, 8, 9, 18] as well as to the recent work [22].

Let us finally remark on an important similarity to the condition (P ) on the potential
U(n) = {Un}n∈Z

N with the assumptions of [26] on the potential U(x), x ∈ R
N of (1.1). As in

[26], we do not assume any particular dependence of the potential Un on the spatial coordinates
(the potential may depend on all or less spatial coordinates e.g., the dimension of the potential
may be different than the full-spatial dimension). Thus we may conclude that while both
bounds (1.2) and the discrete analog (1.8) are independent of the dimension of the potential,

3
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only the discrete analog is, in addition, independent of the spatial dimension. It is worth
emphasizing that the dimension of the potential is of mathematical and physical significance.
See Baizakov, Malomed and Salerno [3], and Sivan, Fibich and Weinstein [34] for the effect of
the potential dimension in DNLS lattices. In fact, potentials whose dimension is smaller than
the full-spatial dimension of the lattice may still support stable single-and multiple-peaked
solitons in this lattice, [3]. The dimension of the potential has important effects on the stability
of these solitons, [34].

We claim that the results of this paper could be of interest not only due to the importance
of the discrete Schrödinger operator itself (see Damanik, Killip and Simon [13], Damanik,
Hundertmark, Killip and Simon [14]) but also due to some further applications, especially
regarding the dynamics of some nonlinear spatially discrete systems. Weyl’s type estimate on
the eigenvalues of the auxiliary discrete operator could be useful for the derivation of explicit
estimates on the Hausdorff dimension of the global attractor associated with damped DNLS.
A particular example concerning the dynamics of inhomogeneous waveguide arrays is briefly
discussed in section 2.1. We refer to Eilbeck [16] and Kevrekidis, Rasmussen and Bishop
[25] for reviews on DNLS equations and to [23, 24] for the existence of attractors for damped
DNLS lattices. We also refer to Aceves, Luther, de Angelis, Rubenchik, Turitsyn [2, 37], for
combinations of continuous and discrete nonlinear problems.

2. Estimation of the number of bound states Nd(0)

We start with some preliminaries. First, we recall that between the standard sequence spaces

�p =

⎧⎪⎨
⎪⎩φ = {φn}n∈Z

N : ‖φ‖p =
⎛
⎝∑

n∈Z
N

|φn|p
⎞
⎠

1
p

< ∞

⎫⎪⎬
⎪⎭ , (2.1)

the following elementary embedding relation [31] holds:

�q ⊂ �p, ‖φ‖p � ‖φ‖q1 � q � p � ∞. (2.2)

Note that the contrary holds for the Lp(�)-spaces if � ⊂ R
N has a finite measure. For p = 2,

we get the usual Hilbert space of square-summable sequences endowed with the inner product

(φ,ψ)2 =
∑
n∈Z

N

φnψn, φ,ψ ∈ �2. (2.3)

We shall make thorough use of weighted sequence spaces: for a sequence W = {Wn}n∈Z
N with

Wn > 0 for all n ∈ Z
N , we consider the weight W−1 := {

1
Wn

}
n∈Z

N and define the weighted

sequence space �2
W−1 as

�2
W−1 =

⎧⎪⎨
⎪⎩φ = {φn}n∈Z

N , : ‖φ‖�2
W−1

=
⎛
⎝∑

n∈Z
N

1

Wn

|φn|2
⎞
⎠

1
2

< ∞

⎫⎪⎬
⎪⎭ , (2.4)

which is a Hilbert space endowed with the scalar product

(φ,ψ)�2
W−1

=
∑
n∈Z

N

1

Wn

φnψn, φ,ψ ∈ �2
W−1 . (2.5)

Let us assume in addition that W ∈ �∞. Then∑
n∈Z

N

Wn|φn|2 � ‖W‖2
∞

∑
n∈Z

N

1

Wn

|φn|2, for all φ ∈ �2
W−1 . (2.6)

4
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Definition 2.1. If W ∈ �∞, we denote by �2
W the completion of the space �2

W−1 with respect to
the norm

‖φ‖2
�2
W

=
∑
n∈Z

N

Wn|φn|2. (2.7)

As it can be easily noted,∑
n∈Z

N

|φn|2 � ‖W‖∞
∑
n∈Z

N

1

Wn

|φn|2, for all φ ∈ �2
W−1 . (2.8)

Thus, from definition 2.1 and (2.6)–(2.8) we have

�2
W−1 ⊂ �2 ⊂ �2

W, (2.9)

the inclusions being dense. We remark that if W ∈ �σ , σ � 1, the space �2
W−1

(
�2

W

)
contains

sequences decaying faster (or slower) than the elements of �2. In what follows, we shall use
the following compactness lemma.

Lemma 2.2 ([21, lemma 2.1, pg 118]. We assume that the positive sequence W ∈ �
q−1
q−2 for

some q > 2 such that Wn > 0 for all n ∈ Z
N . Then �2 ⊂ �2

W with a compact inclusion.

At this point, we mention that under condition (P ), the operator −�d + U has a discrete
spectrum in the negative real line: consider the associated quadratic form δd : �2 × �2 → R,

δd(φ,ψ) := (−�dφ,ψ)2 +
∑
n∈Z

N

Unφnψn, φ,ψ ∈ �2.

It is a Garding form, since due to (P ) and (2.16),

δd(ψ,ψ) = (−�dψ,ψ)2 +
∑
n∈Z

N

Un|ψn|2 � ν0‖ψ‖2
2 −

∑
n∈Z

N

|Un||ψn|2,

and by lemma (2.2), the embedding �2 ⊂ �2
W is compact for W = |U |. Hence, by

[39, theorem 22.G, pg 369], −�d + U has infinitely many eigenvalues which if counted
according to their multiplicity,

−1 < μ1 � μ2 � · · · � μj � · · · → ∞, as j → ∞.

The smallest eigenvalue μ1 can be characterized by the minimization problem

μ1 = inf{δd(ψ,ψ) : ‖ψ‖�2
W

= 1}, W = |U |. (2.10)

If ψ1 = {ψ1,n}n∈Z
N is the eigenstate associated with μ1, then φn(t) = e−iμ1tψ1,n is the ground

state breather solution of (1.7). A key work on the existence and thresholds for the existence
of nonlinear localized modes for DNLS lattices is that of Weinstein [37]. We also refer to the
recent work [10] for the DNLS with saturable and power nonlinearity.

The estimation of Nd(0) will be based on a Weyl’s type estimate on the eigenvalues of
the auxiliary problem

−(�dψ)n + Vnψn = λWnψn, n ∈ Z
N . (2.11)

For V being as in condition (P ) and W as in lemma 2.2, we consider the discrete operator
L0 : �2

W−1 → �2
W ,

(L0ψ)n∈Z
N = 1

Wn

[−(�dψ)n + Vnψn] , (2.12)

which is well defined and continuous due to

‖L0ψ‖2
�2
W

� (4N + c1)‖ψ‖2
�2
W−1

, c1 = ‖V ‖∞‖W‖2
∞, for all ψ ∈ �2

W−1 .

5



J. Phys. A: Math. Theor. 41 (2008) 455201 N I Karachalios

Proposition 2.3. Assume that (a) W ∈ �
q−1
q−2 for some fixed q > 2,Wn > 0 for all n ∈ Z

N ,
and (b) V ∈ �∞, Vn � ν0 > 0 for all n ∈ Z. The operator L0 : �2

W−1 → �2
W has an extension

L : D(L) ⊆ �2
W → �2

W which is a non-negative and self-adjoint operator. Moreover, there
exists a complete orthonormal basis ψj = {ψj,n}n∈Z

N , j = 1, 2, . . . , of �2
W consisting of

eigenvectors of L with the eigenvalue sequence

0 < λ1 � λ2 � · · · � λj � · · · → ∞, as j → ∞. (2.13)

Proof. For any φ,ψ ∈ �2
W−1 ,

(Lψ, φ)�2
W

= (−�dψ, φ)2 +
∑
n∈Z

N

Vnψnφn

= (−�dφ,ψ)2 +
∑
n∈Z

N

Vnφnψn = (Lφ,ψ)�2
W
, (2.14)

due to the symmetry of −�d in the �2-scalar product. Furthermore,

(Lψ,ψ)�2
W

= (−�dψ,ψ)2 +
∑
n∈Z

N

Vn|ψn|2. (2.15)

From the right-hand side of (2.15), we may define a norm on �2

‖ψ‖2
2,V := (−�dψ,ψ)2 +

∑
n∈Z

N

Vn|ψn|2.

The norm ‖·‖2,V is equivalent to the standard norm of �2 since

ν0‖ψ‖2
2 � ‖ψ‖2

2,V � (2N + c2)‖ψ‖2
2, c2 = ‖V ‖∞. (2.16)

Then, by using (2.9), (2.15) and (2.16), we deduce that

(Lψ,ψ)�2
W

� c‖ψ‖2
�2
W

, for all ψ ∈ �2
W−1 , (2.17)

with c = ν0/‖W‖∞. By the definitions 2.1 and (2.17), Friedrich’s extension theory (cf Zeidler,
[39, theorem 19.C, pg 126]) is applicable to the operator L0 with the domain of the definition
D(L0) = �2

W−1 . The energy space XE is the completion of �2
W−1 in the norm ‖·‖2,V and is a

Hilbert space with the inner product

[φ,ψ] := (−�φ,ψ)2 +
∑
n∈Z

N

Vnφnψn.

Due to the equivalence of norms (2.16), we have XE ≡ �2. The Friedrich’s extension of the
operator L0 is the operator L : D(L) → �2 with its domain defined as

D(L) :=
{
ψ ∈ XE ≡ �2 :

1

Wn

[−(�dψ)n + Vnψn] ∈ �2
W

}
. (2.18)

Since �2 is compactly embedded in �2
W , there exists a complete orthonormal basis of �2

W

consisting of the eigenvectors ψj = {ψj,n}n∈Z
N , j = 1, 2, . . . , of L with the eigenvalue

sequence (2.13). �

We shall implement the method of [26], to prove a Weyl’s type estimate on the eigenvalues
of the problem (2.11). This estimate is given in

6
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Theorem 2.4. Assume that (a) W ∈ �
q−1
q−2 for some fixed q > 2,Wn > 0 for all n ∈ Z

N and
(b) V ∈ �∞, Vn � ν0 > 0 for all n ∈ Z. The eigenvalues (2.13) of the eigenvalue problem
(2.11) satisfy Weyl’s type estimate

λj � ν0

e

⎛
⎝∑

n∈Z
N

W
q−1
q−2

n

⎞
⎠

− q−2
q−1

j
q−2
q−1 , j → ∞. (2.19)

Proof. The Friedrich’s extension L being non-negative and self-adjoint in �2
W , gives rise to

the semigroup of operators e−Lt for every t > 0, possessing a kernel H(t) = {Hm,n(t)}m,n∈Z
N

such that Hm,n(t) > 0 for all (m, n, t) ∈ Z
N × Z

N × (0,∞). The operator L has compact
resolvent, thus Hm,n(t) can be represented as (15, cf Davies [pg 108])

Hm,n(t) =
∞∑
i=1

exp(−λit)ψi,mψi,n for all m, n ∈ Z
N . (2.20)

We quote that Hm,n(t) solves the problem

∂tHm,n(t) − 1

Wn

[(�dH(t))n − VnHm,n(t)] = 0, in Z
N × Z

N × (0,∞),

Hm,n(t) > 0, in Z
N × Z

N × (0,∞),

lim
|m||n|→∞

Hm,n(t) = 0, t ∈ (0,∞).

(2.21)

Since the eigenvectors ψj , j = 1, 2, . . . , form an orthonormal basis of �2
W , i.e.,∑

n∈Z
N

Wnψi,nψj,n = δij , (2.22)

it follows that

F(t) :=
∞∑
i=1

exp(−2λit) =
∑

m∈Z
N

∑
n∈Z

N

H2
m,n(t)WmWn. (2.23)

Applying Hölder’s inequality, we get the estimate

F(t) =
∑

m∈Z
N

Wm

∑
n∈Z

N

H
2(q−1)

2q−3
m,n (t)H

2(q−2)

2q−3
m,n (t)Wn

�
∑

m∈Z
N

Wm

⎡
⎣∑

n∈Z
N

(
H

2(q−1)

2q−3
m,n (t)

)2q−3
⎤
⎦

1
2q−3

⎡
⎣∑

n∈Z
N

(
H

2(q−2)

2q−3
m,n (t)Wn

) 2q−3
2(q−2)

⎤
⎦

2(q−2)

2q−3

=
∑

m∈Z
N

Wm

⎛
⎝∑

n∈Z
N

H2(q−1)
m,n (t)

⎞
⎠

1
2q−3

⎛
⎝∑

n∈Z
N

Hm,n(t)W
2q−3

2(q−2)

n

⎞
⎠

2(q−2)

2q−3

=
∑

m∈Z
N

W
q−1
2q−3

m W
q−2
2q−3

m

⎛
⎝∑

n∈Z
N

H2(q−1)
m,n (t)

⎞
⎠

1
2q−3

⎛
⎝∑

n∈Z
N

Hm,n(t)W
2q−3

2(q−2)

n

⎞
⎠

2(q−2)

2q−3

�

⎡
⎢⎣ ∑

m∈Z
N

Wm

⎛
⎝∑

n∈Z
N

H2(q−1)
m,n (t)

⎞
⎠

1
q−1

⎤
⎥⎦

q−1
2q−3

⎡
⎢⎣ ∑

m∈Z
N

Wm

⎛
⎝∑

n∈Z
N

Hm,n(t)W
2q−3

2(q−2)

n

⎞
⎠

2
⎤
⎥⎦

q−2
2q−3

.

(2.24)
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We consider the function

Qm(t) =
∑
n∈Z

N

Hm,n(t)W
2q−3

2(q−2)

n . (2.25)

From (2.20) and (2.22), we deduce that Qm(0) = W
1

2(q−2)

m . Thus Q(t) is the solution of the
linear lattice differential equation

∂tQm(t) − 1

Wm

[(�dQ(t))m − VmQm(t)] = 0, in Z
N × (0,∞), (2.26)

Qm(0) = W
1

2(q−2)

m , in Z
N × (0,∞),

lim
|m|→∞

Qm(t) = 0, t ∈ (0,∞).
(2.27)

Multiplying (2.26) by Q(t) in the �2
W -inner product, we get the energy equation

1

2

d

dt

∑
m∈Z

N

WmQ2
m(t) + (−�dQ(t),Q(t))2 +

∑
m∈Z

N

VmQ2
m(t) = 0.

This energy combined with (2.27), gives the estimate

∑
m∈Z

N

WmQ2
m(t) �

∑
m∈Z

N

WmQ2
m(0) =

∑
m∈Z

N

W
q−1
q−2

m . (2.28)

Now, by inserting (2.25) and (2.26) into (2.24), the inequality

F(t) �

⎡
⎢⎣ ∑

m∈Z
N

Wm

⎛
⎝∑

n∈Z
N

H2(q−1)
m,n (t)

⎞
⎠

1
q−1

⎤
⎥⎦

q−1
2q−3 ⎛

⎝ ∑
m∈Z

N

WmQ2
m(t)

⎞
⎠

q−2
2q−3

�

⎡
⎢⎣ ∑

m∈Z
N

Wm

⎛
⎝∑

n∈Z
N

H2(q−1)
m,n (t)

⎞
⎠

1
q−1

⎤
⎥⎦

q−1
2q−3 ⎛

⎝ ∑
m∈Z

N

WmQ2
m(0)

⎞
⎠

q−2
2q−3

�

⎡
⎢⎣ ∑

m∈Z
N

Wm

⎛
⎝∑

n∈Z
N

H2(q−1)
m,n (t)

⎞
⎠

1
q−1

⎤
⎥⎦

q−1
2q−3 ⎛

⎝ ∑
m∈Z

N

W
q−1
q−2

m

⎞
⎠

q−2
2q−3

,

follows. Hence, we have that

F
2q−3
q−1 (t) �

⎡
⎢⎣ ∑

m∈Z
N

Wm

⎛
⎝∑

n∈Z
N

H2(q−1)
m,n (t)

⎞
⎠

1
q−1

⎤
⎥⎦

⎛
⎝ ∑

m∈Z
N

W
q−1
q−2

m

⎞
⎠

q−2
q−1

. (2.29)

To estimate the right-hand side of (2.29) further, we shall use the inequality⎛
⎝∑

n∈Z
N

H2(q−1)
m,n (t)

⎞
⎠

1
q−1

� 1

ν0

⎡
⎣(−�dH(t),H(t))2 +

∑
n∈Z

N

VnH2
m,n(t)

⎤
⎦ . (2.30)
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Inequality (2.30) comes from (2.2) and the equivalence of norms (2.16). On the other hand,
from (2.21) we infer that

d

dt
F(t) = 2

∑
m∈Z

N

∑
n∈Z

N

Hm,n(t)WmWn∂tHm,n(t)

= 2
∑

m∈Z
N

∑
n∈Z

N

Hm,n(t)WmWn

{
− 1

Wn

[
(�dH(t))n − VnHm,n(t)

]}

= −2
∑

m∈Z
N

Wm

⎡
⎣(−�dH(t),H(t))2 +

∑
n∈Z

N

VnH2
m,n(t)

⎤
⎦ . (2.31)

Thus, by inserting (2.30) into (2.29) we have that

F
2q−3
q−1 (t) � 1

ν0

⎧⎨
⎩

∑
m∈Z

N

Wm

⎡
⎣(−�dH(t),H(t))2 +

∑
n∈Z

N

VnH2
m,n(t)

⎤
⎦
⎫⎬
⎭

⎛
⎝ ∑

m∈Z
N

W
q−1
q−2

m

⎞
⎠

q−2
q−1

,

which can be rewritten—by using (2.31)—as

F
2q−3
q−1 (t) � − 1

2ν0

⎛
⎝ ∑

m∈Z
N

W
q−1
q−2

m

⎞
⎠

q−2
q−1

d

dt
F(t). (2.32)

Integration of (2.32), with respect to time and (2.23), yields

∞∑
i=1

exp(−2λit) �
[

q − 1

2ν0(q − 2)

] q−1
q−2

⎛
⎝ ∑

m∈Z
N

W
q−1
q−2

m

⎞
⎠

q−2
q−1

t
− q−1

q−2 . (2.33)

Setting

t = q − 1

2(q − 2)λj

,

in (2.33), we conclude with the estimate

j e− q−1
q−2 �

∞∑
i=1

exp

(−λi(q − 1)

λj (q − 2)

)
� ν

− q−1
q−2

0

⎛
⎝ ∑

m∈Z
N

W
q−1
q−2

m

⎞
⎠ λ

q−1
q−2

j . (2.34)

From inequality (2.34), the estimate (2.19) readily follows. �

Using theorem 2.4 we may proceed to the estimation of Nd(0) as in [26].

Theorem 2.5. Consider the eigenvalue problem (1.4) assuming that the potential U satisfies
condition (P ). The number of bound states Nd(0) satisfies the estimate (1.8).

Proof. In this case, the quadratic form associated with the eigenvalue problem (1.4) is

(−�dψ,ψ)2 +
∑

n∈Z
N Vn|ψn|2 +

∑
n∈Z

N Un|ψn|2∑
n∈Z

N |ψn|2 =
∑

n∈Z
N |Un‖ψn|2∑

n∈Z
N |ψn|2

×
{

(−�dψ,ψ)2 +
∑

n∈Z
N Vn|ψn|2∑

n∈Z
N |Un‖ψn|2 − 1

}
. (2.35)

9
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Thus the subspace on which the left-hand side of (2.35) is non-positive has dimension equal
to that of the subspace on which the quadratic form

(−�dψ,ψ)2 +
∑

n∈Z
N Vn|ψn|2∑

n∈Z
N |Un‖ψn|2 (2.36)

is less than or equal to one. Since (2.36) is the quadratic form associated with the operator
L : D(L) ⊆ �2

W → �2
W in the case W = |U |, we have that the number of non-positive

eigenvalues of the eigenvalue problem (1.4) is equal to the number of eigenvalues of the
eigenvalue problem (2.11) which are less than or equal to 1.

Now let λj be the greatest eigenvalue of the eigenvalue problem (2.11) which is less than
or equal to 1. Then due to the estimate (2.19) we have

∑
n∈Z

N

|Un|
q−1
q−2 � λ

q−1
q−2

j

∑
n∈Z

N

|Un|
q−1
q−2 � j

(
ν0

e

) q−1
q−2

� Nd(0)

(
ν0

e

) q−1
q−2

,

which is (1.8). �

Theorem 2.5 implies the following

Corollary 2.6. Consider the eigenvalue problem (1.4) under condition (P ). If the negative
part satisfies ‖Un‖ q−1

q−2
� 1, then there are no negative eigenvalues, for any N � 1.

Remark 2.7. 1D example: as an example we consider the case n ∈ Z
+ and |Un| = n−1, a case

of (1.4) supplemented with the one-sided Dirichlet boundary condition, ψ0 = 0 on n = 0,
[12]. Applying (1.8), one gets the estimate

Nd(0) �
(

e

ν0

) q−1
q−2

ζ

(
q − 1

q − 2

)
, for all q � 3, (2.37)

since n−1 ∈ �σ for all σ > 1. Note that when Un = −cn−2+εε > 0 (strictly negative potential),
there are infinitely many eigenvalues, [12].

Remark 2.8. The dimension-independent estimate (1.8) for the linear discrete operator (1.4)
is another manifestation of the role of discreteness since in the continuous linear counterpart
the number of bound states depends on the dimension due to the critical Sobolev inequality
(1.3). For the discrete operator (1.4) the independence of the dimension is a consequence of
the dimension-independent ‘discrete Sobolev inequality’ (2.30). The estimate (1.8) is valid
for any dimension N � 1 in contrast to the continuous counterpart (1.2) which is not valid
when N = 1, 2, and implies the dimension-independent criterion of corollary 2.6.

In the study of nonlinear localized modes on multidimensional lattices, an important
difference compared with the continuous case has been rigorously proved for the DNLS
equation in [37]. In [37], the hypothesis suggested by Flach, Kladko and MacKay [19] on
excitation thresholds for the existence of nonlinear localized modes has been resolved. For
the DNLS equation with power nonlinearity F(z) = |z|2σ z, it was proved that an excitation
threshold exists if σ � 2/N . For instance, the results of [37] prove that there exists an
excitation threshold Rthresh(N) on the power of periodic solutions, as well as the existence of a
frequency ω∗ > 0 on which this threshold value on the power is achieved. The corresponding
solution ψn(t) = eiω∗tφn is a ground state having power ‖φ‖2

2 = Rthresh—the excitation
threshold value. This dramatically differs with the continuous case where an excitation
threshold appears only in the case of the critical nonlinearity σ = 2/N , [38]. The Weinstein’s
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excitation threshold [37] is related to the best constant of a discrete analog of the Sobolev–
Gagliardo–Nirenberg inequality

∑
n∈Z

N

|φn|2σ+2 � C

⎛
⎝∑

n∈Z
N

|φn|2
⎞
⎠

σ

(−�dφ, φ)2, σ � 2/N. (2.38)

When σ < 2/N standing waves of arbitrary small power exist, [37]. However it was proved
in [10] that there exist dimension-independent lower bounds for the power of standing wave
solutions for the DNLS equation with power (as well as for the saturable) nonlinearity.
These explicit lower bounds are different form the Weinstein’s thresholds in the sense that no
periodic localized solution can have power less than the prescribed estimates of [10] even
when σ < 2/N . The ‘global character’ of the estimates of [10] is revealed when one considers
‘limiting’ cases of small (large) values of σ < 2/N (large values of σ � 2/N—the case of
excitation threshold), as it was justified by numerical simulations.

In a similar manner and motivated by the ‘global character’ of the dimension-independent
estimates on the power of nonlinear localized modes of [10], we may think for a possible
‘global character’ of the estimate on the number of bound states (1.8) for the linear discrete
operator (1.4). To this end, numerical simulations for testing (1.8) could be of interest.

2.1. Applications: dynamics of light in inhomogeneous waveguide arrays

We conclude with a short comment on some applications of the results to the study of the
dynamics of some spatially discrete nonlinear systems. A particular example is a DNLS
equation with site-dependent coupling strength

i∂zAn + εn,n+1An + εn,n−1An−1 + |An|2An = 0, n ∈ Z. (2.39)

The DNLS system (2.39) describes the evolution of the slowly varying mode amplitude
An along the propagation direction z in an inhomogeneous waveguide array (see Ablowitz
and Musslimani [1], Pertsch, Peschel and Lederer [29, pg 746]). The case εn,m = const,
simplifies to the usual DNLS equation. The variation of the coupling must obey a symmetry
relation εn,m = εm,n to ensure energy conservation. Cases of interest include the periodic
modulation of the coupling only along the direction z (e.g. εn,n+1 = εn,n−1 ∼ cos(z)) or only
its linear variation in the transverse direction i.e. εn,n+1 = εn,n−1 = εn ∼ n. Although in the
latter, various scalings can be applied (e.g. to transform (2.39) to the DNLS system with an
unbounded potential, [29], Pertsch, Peschel and Lederer [30]), it is still convenient to keep the
equation in the form (2.39): we remark that the transformation An → An eizεn transforms the
equation (2.39) to

i∂zAn + εn(An − 2An + An−1) + |An|2An = 0, n ∈ Z. (2.40)

Aiming at the study, the physically justified case of a weakly damped and periodically forced
version of (2.40),

i∂zAn + iδAn + εn(An − 2An + An−1) + |An|2An = gn eiωz, n ∈ Z, ω > 0, (2.41)

we note that the transformation An → An eiωz brings the non-autonomous DNLS lattice (2.41)
to the autonomous form

i∂zAn + iδAn + εn(An+1 − 2An + An−1) − ωAn + |An|2An = gn, ω > 0. (2.42)

Among other interesting various boundary conditions which can be applied (periodic or
Dirichlet), a case leading to the study of an infinite-dimensional system is the one-sided
Dirichlet boundary condition A0 = 0 on n = 0, see remark 2.7. Restricted to the case εn > 0
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for all n ∈ Z
+ and εn ∼ n (the simplest case is εn = n [29]), the natural phase space for the

study of (2.42) supplemented with the one-sided Dirichlet boundary condition is the space
�2

W(Z+) where Z
+ = {1, 2, . . .} and Wn = ε−1

n ∼ n−1: the DNLS system (2.42) has the
obvious energy equation

1

2

d

dz
‖A‖2

�2
W

+ δ‖A‖2
�2
W

= Im
∞∑

n=1

WnAngn. (2.43)

Based on the energy equation (2.43), we can apply the energy method (Ball [4, 5]) as in [24]
to prove

Theorem 2.9. Let the initial condition be A0 = {An(0)}n∈Z+ and g ∈ �2
W . The dynamical

system defined by (2.42), S(t) : �2
W → �2

W,A(t) = S(t)A0, possesses a global attractor in the
strong topology of �2

W .

Solutions in �2
W seem to be of physical significance since their possible slower rate of decay

(and thus their possible different type of localization, for example, with a decaying oscillatory
part) could be connected with the behavior of the localized solutions described in [29,
pg 750-751].
Regarding now the operator

(LωA)n∈Z
+ = −εn(An+1 − 2An + An−1) + ωAn, (2.44)

is an one-dimensional analog of (2.12) and under some slight modifications, a similar result
to theorem 2.4 can be shown: due to (2.6), for every A ∈ �2

W−1 we have

(LωA,A)�2
W

=
∞∑

n=1

|An+1 − An|2 + ω

∞∑
n=1

1

Wn

|An|2 � ν1‖A‖2
�2
W

, ν1 = ω

‖W‖2∞
. (2.45)

The right-hand side of (2.45) defines the energy space XE endowed with the norm ‖A‖2
XE

=
(LωA,A)�2

W
. Using (2.8) we get the equivalence of norms

ω‖A‖2
�2
W−1

� ‖A‖2
XE

� (2‖W‖∞ + ω)‖A‖2
�2
W−1

, (2.46)

thus XE ≡ �2
W−1 . From lemma (2.2) and (2.9), the inclusion �2

W−1 ⊂ �2
W is compact and Lω

has a non-negative self-adjoint extension Lω : D(Lω) ⊆ �2
W → �2

W (here D(Lω) ≡ �2
W−1 ),

with a discrete spectrum in the positive real line. This time we work with the kernel Hm,n(t)

of the linear equation ∂tHm,n(t) + (LωH)n∈Z
+ = 0. Repeating the proof of theorem 2.4, we

use instead of (2.30), the inequality( ∞∑
n=1

H2(q−1)
m,n (t)

) 1
q−1

� 1

ν1

[ ∞∑
n=1

|Hn+1,m(t) − Hn,m(t)|2 +
∞∑

n=1

1

Wn

H2
m,n(t)

]
,

which comes out if one combines (2.2), (2.9) and (2.46). For Wn = ε−1
n ∼ n−1, we have due

to remark 2.7 the estimate

λj � ν1

e

( ∑
n∈Z

+

W
q−1
q−2

n

)− q−2
q−1

j
q−2
q−1 , j → ∞, for all q � 3. (2.47)

In the simplest case Wn = ε−1
n = n−1, we get

λj � ω

e

[
ζ

(
q − 1

q − 2

)]− q−2
q−1

j
q−2
q−1 , j → ∞, for all q � 3.
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The estimate (2.47) could be useful in the study of the transformation of the m-dimensional
volumes in �2

W from the linearized flow associated with (2.42) (see Ghidaglia [20, section 3.2,
pg 400]), in order to prove that the global attractor is finite dimensional. For instance, estimates
of the form (2.47) constitute an essential step for the derivation of lower bounds on the m-sum
of the eigenvalues of the linear operator involved in the nonlinear evolution equation. With
these lower bounds in hand, one can proceed to the application of Constantin–Foias–Temam
theory for the investigation of the possible exponential decay of the m-dimensional volume
carried out by the linearized flow, [36, lemma VI.2.1, pg 390, proposition 2.1, pg 364 and
theorem 3.3, pg 374]. This task is not trivial and its completion will be considered in a
subsequent work.

We conclude by noting that a continuous case of the weighted operators studied in this
work appears in the study of equations of the form −|x|2�u = λu + f (u), related to the
Wheeler–DeWitt quantum cosmological models, Berestycki and Esteban [7], Esteban and
Giacomoni [17].
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